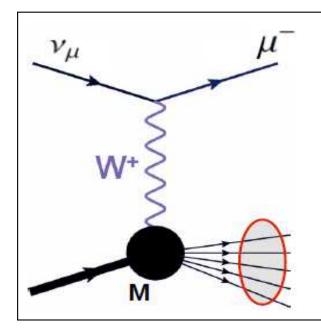
Low- ν Flux in NuMI

D. Naples

NuMI-X Meeting April 25, 2014

Outline


- Reminder of Low-ν Method
- Low-ν Flux Measurement from MINOS.
- Low- ν for beam fits.
- ullet Part II- Ongoing work and plans for MINERuA

"Low- ν " Flux Method

Direct measurement of flux from a well-understood behavior of the cross section.

- Method originated in high energy neutrino scattering experiments CCFR, NuTeV.
 S. Mishra, Proceedings of the Workshop on Hadron Structure Functions and Parton Distributions, 1990 p.84 and W. G
 Seligman, PhD Thesis, Columbia Univ. (1997) Nevis 292.
 - ▶ NuTeV and CCFR energy range (30-300) GeV
- Adapted to lower NuMI beam energies by MINOS (3-50 GeV). "Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector.", by MINOS Collaboration (P. Adamson et al.), Phys. Rev. D 81, 072002 (2010) and D. Bhattarchya, PhD Thesis, Univ. of Pittsburgh (2009).
 - ▶ MINOS ν flux (3-50 GeV); $\overline{\nu}$ flux (6-50 GeV).
- MINER \(\nu\)A is also applying this technique in NuMI (2-20 GeV).
 - ▶ Finer granularity and better E_{HAD} resolution.
 - ightharpoonup flux from RHC beam data.

"Low-\nu" Flux Basic Idea

$$Q^{2} = 4E_{\nu}E_{\mu}\sin^{2}\frac{\theta}{2}$$

$$x = \frac{Q^{2}}{2ME_{HAD}}$$

$$y = \frac{E_{HAD}}{E_{\nu}}$$

$$W^{2} = M^{2} + 2ME_{HAD} - Q^{2}$$

$$\nu = E_{HAD}$$

Squared four momentum transfer

Fractional quark momentum

Inelasticity

Squared final state invariant mass

Energy transfer to hadronic system

- Use low- $\nu (= y E_{\nu})$ behavior of the CC neutrino cross section.
 - ▶ Differential cross section, $\frac{d\sigma^{\nu,\overline{\nu}}}{d\nu}$, is independent of energy in the limit $\nu \to 0$.
 - Measures the shape of the flux with energy.
- Use external world cross section data to normalize to absolute flux.
 - ► Total neutrino cross section at high energy (E > 10 GeV) is well known (few percent level).

Low- ν Flux Technique

Start with general expression for differential cross section:

$$\frac{d^2 \sigma^{\nu, \overline{\nu}}}{dx d\nu} = \frac{G^2 M}{\pi} \left[\left(1 - \frac{\nu}{E} - \frac{Mx\nu}{2E^2} + \frac{\nu^2}{2E^2} \frac{1 + 2Mx/\nu}{1 + R} \right) F_2(x) \pm \frac{\nu}{E} \left(1 - \frac{\nu}{2E} \right) x F_3(x) \right]$$

Integrate over x for fixed ν :

$$\frac{d\sigma}{d\nu} = A\left(1 + \frac{B}{A}\frac{\nu}{E} - \frac{C}{A}\frac{\nu^2}{2E^2}\right)$$

$$A = \frac{G^2 M}{\pi} \int F_2(x) dx$$

$$B = -\frac{G^2 M}{\pi} \int (F_2(x) \mp x F_3(x)) dx$$

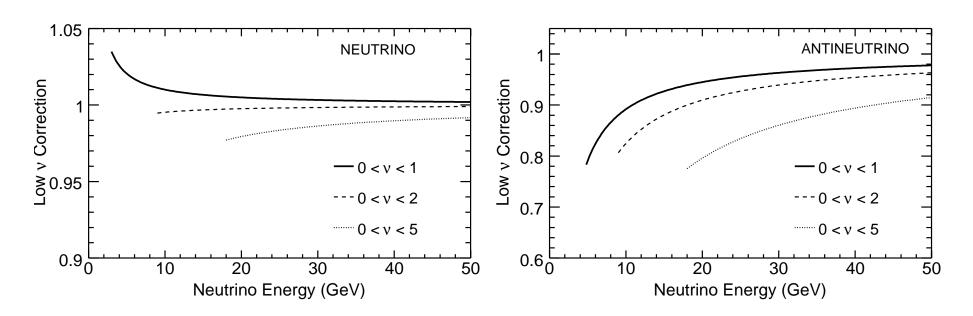
$$C = B - \frac{G^2 M}{\pi} \int F_2(x) \left(\frac{1 + \frac{2Mx}{\nu}}{1 + R(x)} - \frac{Mx}{\nu} - 1\right) dx$$

- *A*, *B* and *C* can also be expressed as integrals over form factors, etc.
- At low y, (i.e. low ν and high E_{ν}) \Rightarrow $(\frac{\nu}{E})$ and $(\frac{\nu}{E})^2$ terms are small.

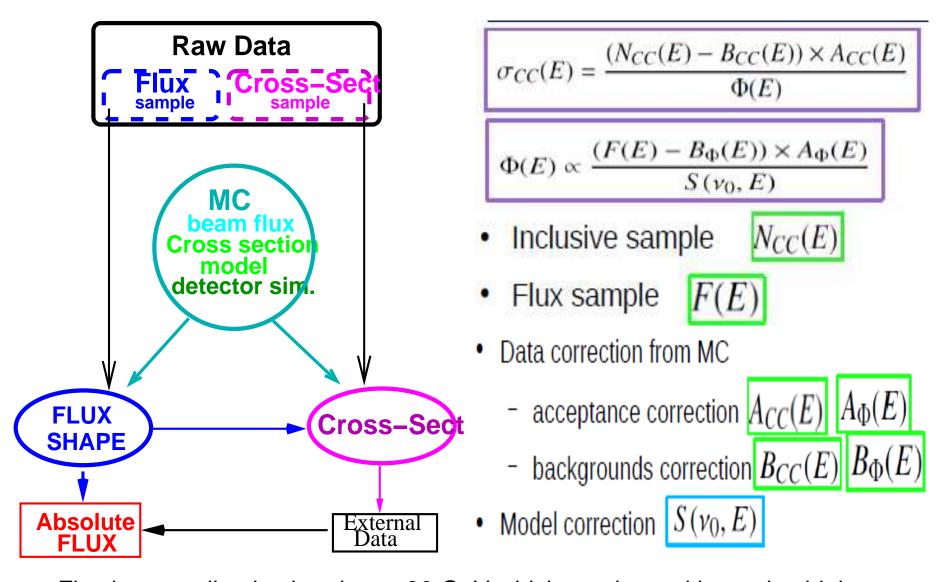
$$\frac{d\sigma}{d\nu}^{\nu}_{\lim y \to 0} = \frac{d\sigma}{d\nu}^{\overline{\nu}}_{\lim y \to 0} = A$$
 approaches a constant, independent of E_{ν} .

• Normalization procedure determines A; correction terms ($\frac{B}{A}$ and $\frac{C}{A}$) are computed from the cross section model.

Low-\(\nu\) Flux Technique (cont'd)


- $\bullet \;$ Select a CC sample at low ν , $N(E)_{(\nu < \nu_o)}$
- Apply a correction for $\frac{\nu}{E}$ dependence, $S^{\nu,\overline{\nu}}(E)$.

$$\Phi^{\nu,\overline{\nu}}(E) \propto \frac{N(E)_{(\nu<\nu_o)}}{S^{\nu,\overline{\nu}}(E)}$$


where

$$SS^{\nu,\overline{\nu}}(E) = \frac{\sigma(\nu < \nu_o, E)}{\sigma(\nu < \nu_o, E \to \infty)}$$

• MINOS uses a sliding ν cut to improve sample statistical precision.

MINOS Low- ν Flux

- Flux is normalized using data >30 GeV which overlaps with precise high-energy measurements. $\boxed{\sigma_{\rm world}^{\nu}(_{30-50{\rm GeV}})=0.675\pm0.009\times10^{-38}{\rm cm}^2/{\rm GeV}}$
 - Antineutrino flux sample uses the same normalization.

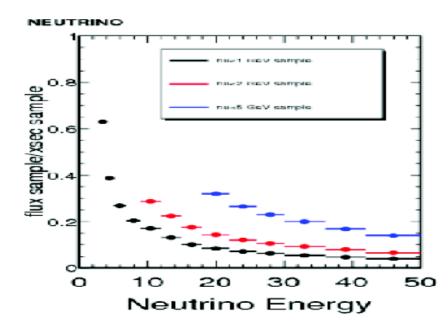
MINOS Low-ν Flux (cont'd)

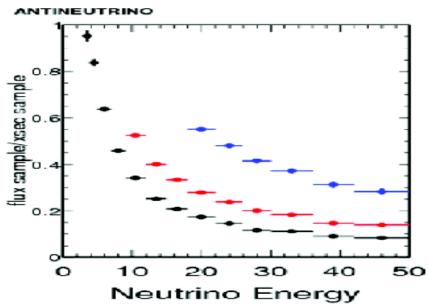
$(N(E)_{CC})$ Inclusive Sample

- Fiducial events with 1 good track.
- $E_{\mu} > 1.5$ GeV (select CC)
- $E_{\nu} > 3$ GeV ν , $E_{\nu} > 5$ GeV $\overline{\nu}$ FHC.
- Additional charge-sign purity cuts for $\overline{\nu}$.

(F(E)) Flux Sample

- Subsample of CC inclusive sample.
- Sliding ν_o cut

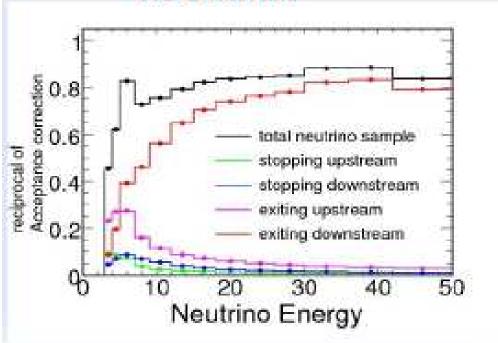

$$\blacktriangleright \nu_0 = 1 \text{ for } E_{\nu} < 9 GeV$$


$$ightharpoonup
u_0 = 2 \text{ for } 9 < E_{\nu} < 18 GeV$$

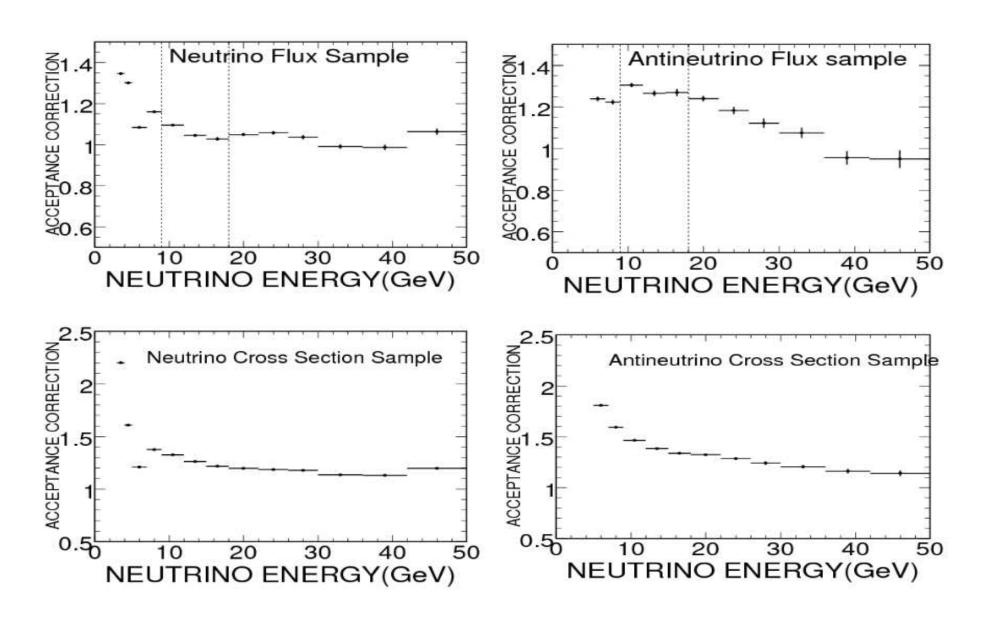
▶
$$\nu_0 = 5 \text{ for } E_{\nu} > 18 GeV$$

Choice of ν cut depends on

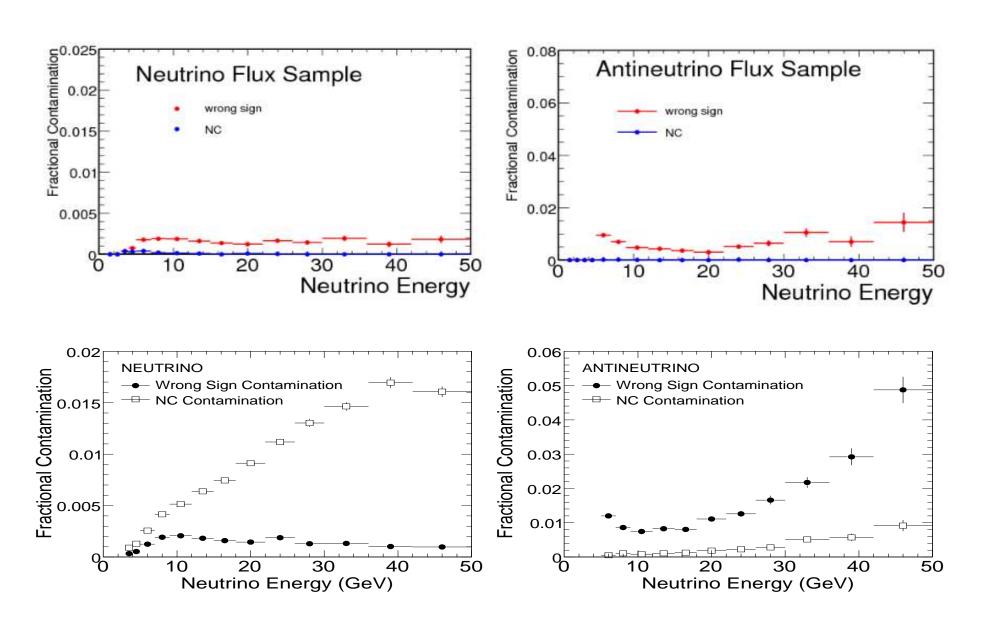
- Hadronic energy resolution (bin purity)
- Trade off between statistical precision at high energy (normalization bin) and inclusive vs. flux sample overlap at low energy.

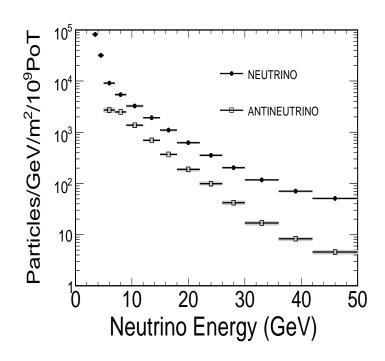


Acceptance Corrections Definition


Acceptance Correction (corrects for effects of event selection, smearing and detector geometry)

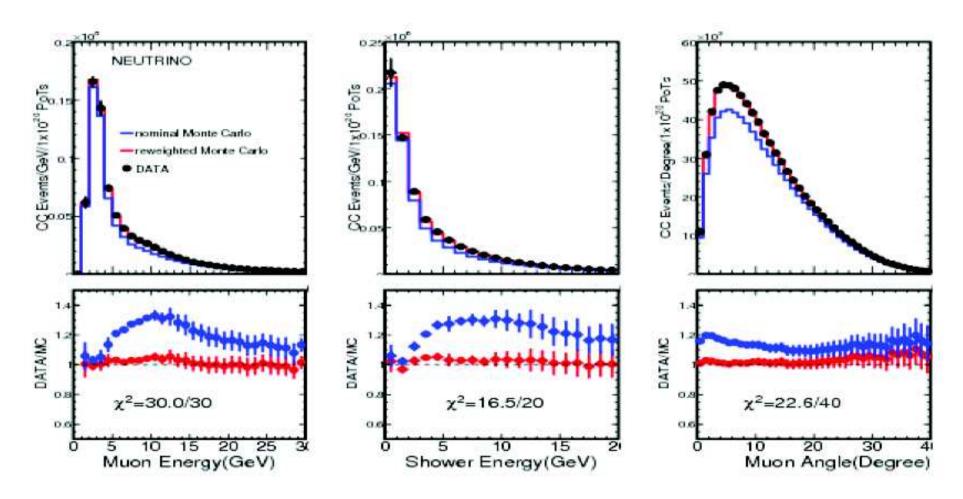
$$Accep_{MC}(E) = \frac{N_{TRUTH}^{MC}(E)}{N_{RECO}^{MC}(E)}$$


Neutrino

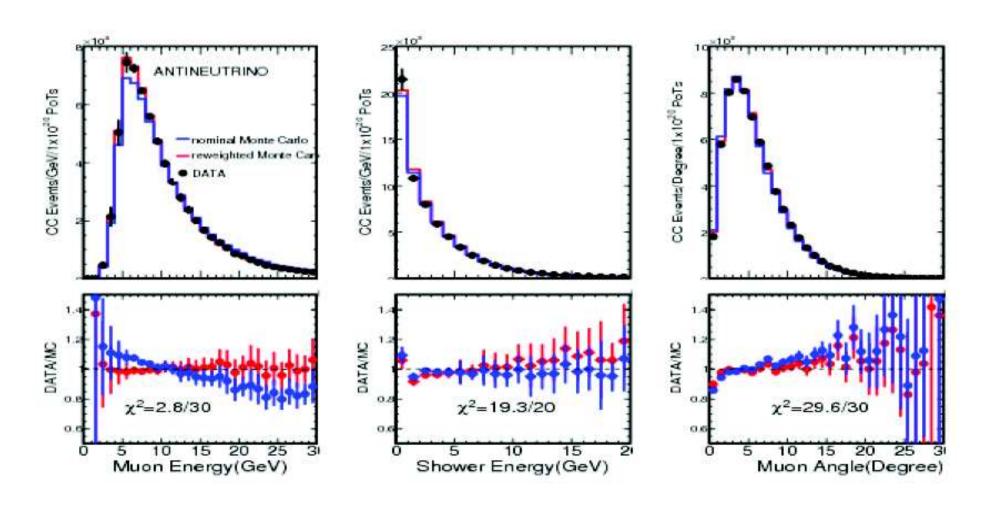

Acceptance Corrections (A_{CC}, A_{Φ})

Wrong-sign and NC Backgrounds

MINOS Low- ν Flux

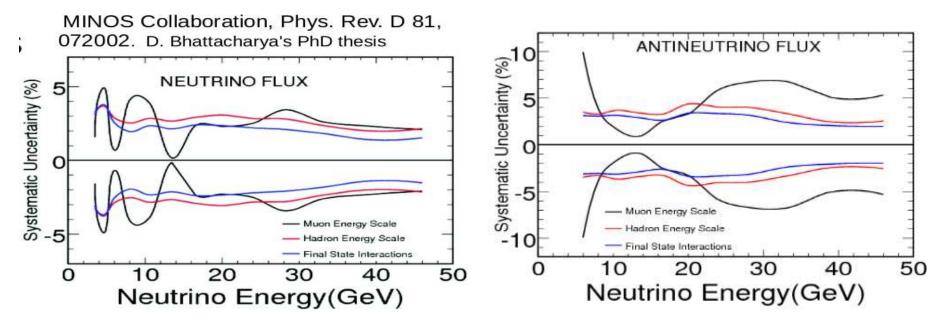

- Data from Runs 1&2 (2.45E20 PoT) of MINOS.
- Low- ν flux compares well with SKZP-tuned flux.

E bin	ν Flux	Error	$\bar{\nu}$ Flux	Error
(GeV)	$Particles/GeV/m^2/10^9 PoT$			
3-4	8.05×10^{4}	5.2×10^{3}	-	-
4-5	3.06×10^{4}	2.4×10^{3}	-	-
5-7	9.07×10^{3}	5.3×10^{2}	2.80×10^{3}	330
7-9	5.18×10^{3}	3.5×10^{2}	2.32×10^{3}	170
9-12	3.21×10^{3}	2.2×10^{2}	1.32×10^{3}	85
12-15	1.94×10^{3}	1.0×10^{2}	6.89×10^{2}	42
15-18	1.09×10^{3}	65	3.79×10^{2}	24
18-22	629	37	190	14
22-26	348	20	86.3	7.8
26-30	200	13	40.1	3.9
30-36	119	6.8	19.3	1.9
36-42	72.2	3.9	9.6	0.9
42-50	51.6	2.8	4.9	0.5


[&]quot;Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector.", by MINOS Collaboration (P. Adamson et al.), Phys. Rev. D 81, 072002 (2010) and D. Bhattarchya, PhD Thesis, Univ. of Pittsburgh (2009).

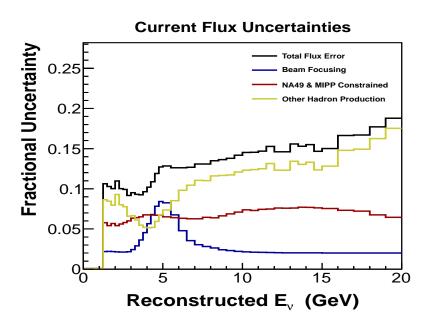
Reweighted MC Comparisons

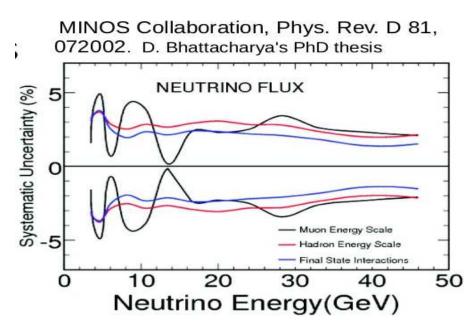
• Low- ν flux weights applied.



Reweighted MC Comparisons (cont'd)

Flux Precision


• Low- ν flux compares well with SKZP-tuned flux but has substantially smaller error bars.



- Results are systematics dominated below \sim 15 GeV.
 - Muon energy scale 2% range, 4% curvature
 - Hadronic energy scale 5.6%
 - Intranuclear final state rescattering model (UPDATE Improved treatment in GENIE).
 - Contamination ($\overline{\nu}$ sample only)
 - Acceptance and smearing correction modeling (Rev. field running)
 - Cross section modeling, (BY parameters, MA QE, etc.)

Flux Precision (cont'd)

Compare with current MINER \(\nu\) A flux error band.

Original motivation for Low- ν flux was for total cross section measurement.

- Low- ν flux used directly in cross section measurements has substantailly smaller error bars.
 - ▶ Caveat: Sample overlap must be considered if used in cross section measurements.
- Errors band above 15 GeV (\sim 10%) can be reduced (statistics dominated).

Low- ν Flux in Beam Fits

- MINER ν A is using low- ν flux for beam tuning (L. Ailaga and M. Korodosky).
 - ► Using direct flux measurement instead of event rate reduces sensitivity to detector and cross section parameters in fit.
 - \triangleright Limited cross section model parameter dependence (to those that change the shape with energy at low- ν).
 - ▶ Less dependence on hadronic energy scale than CC-inclusive samples.
 - ▷ (More dependence on muon energy scale).

Low- ν Flux in ME Beam

This method works at least as well and argueably better at higher energies.

- Increased sample statistics in normalization region.
- Model correction decreases as E_{ν} increases (large for $\overline{\nu}$ at low energies).
- Other systematic errors are perhaps also smaller (hadronic final state effects are fractionally smaller at higher energies).

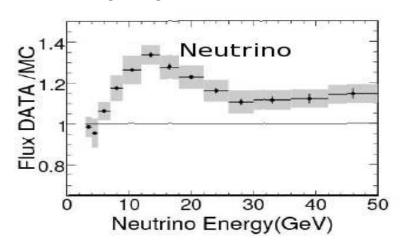
MINOS/MINOS+ complementary to MINER ν A for low- ν flux.

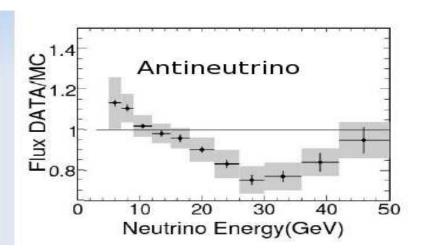
- MINOS has better shower containment and a lower muon energy threshold.
- MINER ν A has better hadron shower resolution (better for lower energies).

How low can you go?

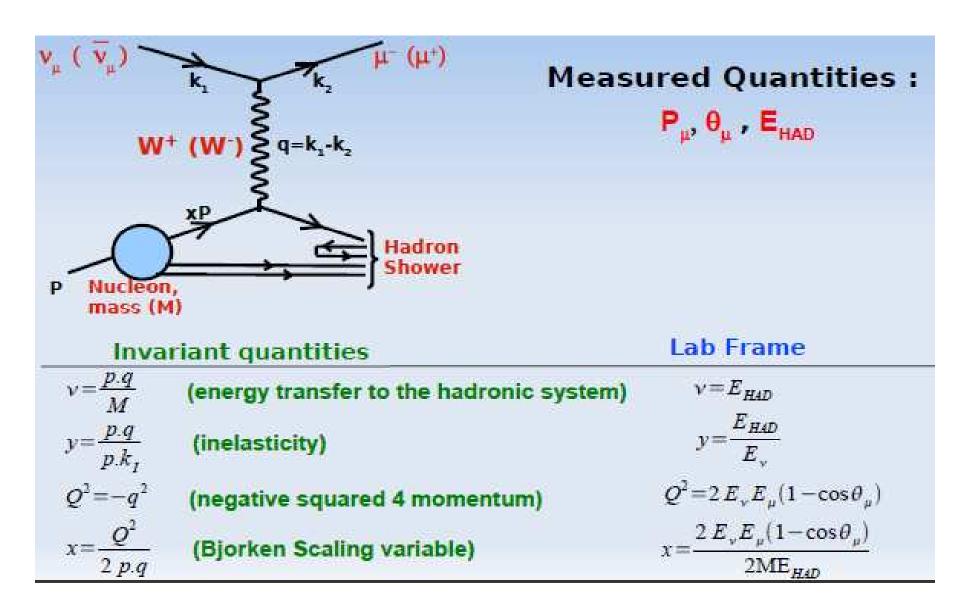
Part II - ongoing work in MINER ν A to push to lower energies and better systematic precision.

Issues

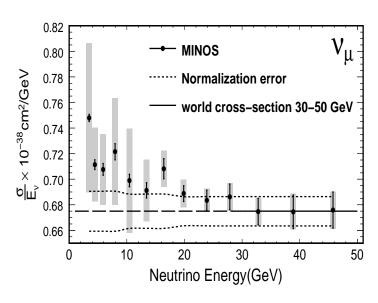

- Model uncertainties at lower energies.
- Detector shower energy resolution (lower ν -cut and bin purity).
- Sample overlap (important for cross section measurements).

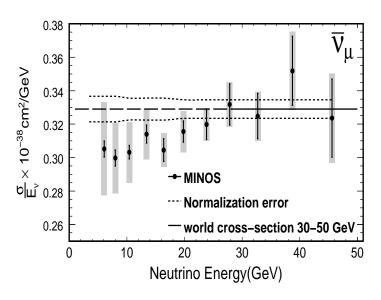

• ..

Extra

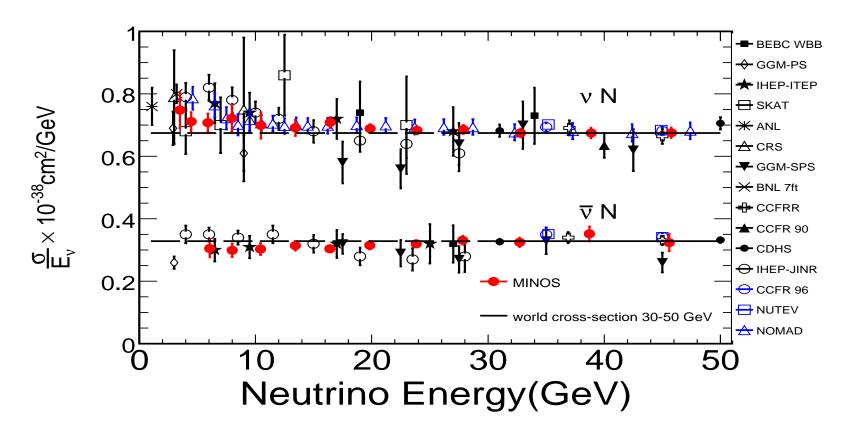

Reweighted MC Comparisons

Flux reweighting factor





Neutrino Scattering


MINOS Cross Section Result

- Results are systematics dominated below \sim 15 GeV.
 - Muon energy scale 2% range, 4% curvature
 - Hadronic energy scale 5.6%
 - Intranuclear final state rescattering model
 - Contamination ($\overline{\nu}$ sample only)
 - Acceptance and smearing correction modeling (Rev. field running)
 - Cross section modeling, (BY parameters, MA QE, etc.)

MINOS Total Cross Sections

- Neutrino cross section MINOS result 2-8% precision in the $E < 30 {\rm GeV}$ range.
- ullet Antineutrino cross section MINOS result 3-9% precision in the $E < 30 {\rm GeV}$ range.
- The cross section sample and the flux are measured in the same detector → some cancellation of systematic errors occurs in flux and cross section samples reducing the total systematic error.